
Prog. Energy 6 (2024) 033002 https://doi.org/10.1088/2516-1083/ad371e

Progress in Energy

OPEN ACCESS

RECEIVED
7 June 2022

ACCEPTED FOR PUBLICATION

22 March 2024

PUBLISHED

8 April 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PERSPECTIVE

Open code and data are not enough: understandability as design
goal for energy system models
Stefan Pfenninger
TU Delft, Faculty of Technology, Policy and Management, Delft, The Netherlands

E-mail: s.pfenninger@tudelft.nl

Keywords: open modelling, understandability, building blocks, modularity, re-usability

Abstract
Energy system models do not represent natural processes but are assumption-laden representations
of complex engineered systems, making validation practically impossible. Post-normal science
argues that in such cases, it is important to communicate embedded values and uncertainties,
rather than establishing whether a model is ‘true’ or ‘correct’. Here, we examine how open energy
modelling can achieve this aim by thinking about what ‘a model’ is and how it can be broken up
into manageable parts. Collaboration on such building blocks—whether they are primarily code or
primarily data—could become a bigger focus area for the energy modelling community. This
collaboration may also include harmonisation and intercomparison of building blocks, rather than
full models themselves. The aim is understandability, which will make life easier for modellers
themselves (by making it easier to develop and apply problem-specific models) as well as for users
far away from the modelling process (by making it easier to understand what is qualitatively
happening in a model—without putting undue burden on the modellers to document every detail).

1. Introduction

What is a model? A dictionary would say something like: a simplified representation of a system, often on a
smaller scale than the original it represents. This interpretation works well when thinking of an architectural
model of a building, a model of the solar system, or a weather forecasting model. With energy system models,
the story is more complicated. Their purpose is less to understand and predict a natural phenomenon or to
represent an engineered system like a single building. Instead, it is to aid decision-making when planning and
operating a complex engineered system, tightly interwoven not just with natural phenomena (e.g. weather
influence on electricity demand and supply) but with the economy and society, and thus with human
behaviour and political decision-making. Not surprisingly, there are debates on the use of models that claim
to objectively and mathematically summarise these messy facets of reality (Anderson and Jewell 2019).

Pfenninger et al (2017) asserted that open energy system modelling is important because it would lead to
improved scientific quality and allow sharing the burden of model development across teams and
institutions. We can define open modelling as consisting of three aspects: free and open-source computer
code, either under a copyleft license like the GPL or a permissive one like the MIT license, open data, for
which comparable license choices like the different creative commons licenses exist (Morrison 2022), and
open access, which means cost-free access to research reports and papers (Morrison 2018, Pfenninger et al
2018). These are both practical issues, i.e. the ability to obtain and examine these artefacts at no cost, but
importantly legal ones: the ability to legally do so, and to reuse or expand on prior work without consent
from the original authors. Given its growing prominence, modellers seem to have found value in openness
(Ringkjøb et al 2018, Chang et al 2021, Scheller et al 2021). However, energy system models exist at the
science-policy boundary and are useful only to the extent to which they can help improve decision-making.
The idea of post-normal science (Funtowicz and Ravetz 1993) is useful here: science that sets itself the goal of
understanding complex human-natural systems where there are no controlled laboratory conditions, where
decision stakes and uncertainty are high, and where a diversity of values and opinions exist. This includes the
problem of eliminating greenhouse gas emissions from the world’s energy supply. Funtowicz and Ravetz
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argued that in post-normal science, researchers should focus on making the values underlying their work
explicit, and on managing rather than eliminating uncertainty (Funtowicz and Ravetz 1993). Have open
energy models allowed this to happen? We discuss this question by first reviewing the role of models as
thought experiments for decision support, identifying understandability as a key but often under-addressed
issue, then, we discuss how models could become more understandable through developing and maintaining
modular ‘building blocks’, then, discuss the tailoring of such an effort to different user groups, and finally,
pull these threads together to make concrete suggestions for next steps.

2. Models as thought experiments for decision support

First, we should clarify what kinds of models we are talking about: energy system models are
techno-economic models of the energy system. We can define them as models that are used for decision
support in planning and implementing the energy transition, for example, to produce pathways for a
carbon-neutral energy supply (e.g. Jacobson et al 2017), to inform capacity expansion of the power grid, or
to examine trade-offs between different renewable energy deployment strategies (e.g. Brown et al 2018,
Tröndle et al 2020). They depict energy generation, conversion and transport processes with costs and
efficiencies, and are often formulated as cost-minimising or welfare-maximising optimisation problems, with
a range of techno-economic constraints to influence the optimal solution, such as minimum shares of certain
technologies, limits on emissions, or a price on carbon. Of key importance is that these models do not model
a natural process and are not predictive, but explorative or normative. Thus, while it is possible to validate
some of their components—for example, a time series of wind power generation based on weather
conditions—there is no way to validate an energy system model as a whole. It is possible to compare
modelled scenarios with historic developments (Trutnevyte 2016). However, this does not answer the
question of whether a model that was used to produce different alternative visions of the future to guide
decision-making can was useful in making decisions on which of these alternatives to implement.

A useful way to think of energy system models is as thought experiments (Ellenbeck and Lilliestam 2019):
as an exploration of what-if questions about the future. If we consider a stylised process of modelling
(figure 1(a)), it starts with a research problem or research question, leading to the selection of data and
making of assumptions, then to the model formulation (including software choice), and the generation of
raw result data that are then analysed and interpreted in a final product such as a paper. The first three steps
together are what is often considered a ‘model’. This model is a set of data and mathematical equations, but it
is not an objective representation of reality. It is based on and contains the world view of the modeller and
the societal discourses leading to the research question (Ellenbeck and Lilliestam 2019). Often, modelling is
commissioned by policymakers; the scope, data and assumptions used may well be influenced by these
policymakers (Süsser et al 2021).

When thinking of energy system models as thought experiments, it is less problematic that they cannot
be validated. The removal of the fact-value distinction is a feature rather than a bug, if the model is a tool to
compare different possible assumptions, whether they are fact-based or value-based. Using the language of
post-normal research, for the model itself to be useful, it is the quality of information that matters, not
whether it is true or correct. Therefore, the thoughts behind the experiment ought to be well-documented
and clearly communicated. This includes not just the fact that a specific number was chosen for a specific
parameter, but why that specific number was chosen. In other words, what matters is that the model—this
combination of assumptions, data, formulation, and code, applied to a specific question with a specific
purpose—is understandable.

This understandability is important also for the modellers themselves because there is a possible danger
(figure 1(b)): once a model exists, that is, once an experimental setup has been established, often with
considerable investment of time, it makes sense to apply it to additional research questions. However,
re-using one experimental setup in a new context can be dangerous. If the assumptions behind the model are
not clear, subsequent users will have difficulties untangling the original research question from the model
design decisions. They no longer have the means to understand the thoughts behind the thought experiment.
When applied to new questions, the original authors’ choices on assumptions, data, and model formulation
may no longer be applicable. Thus, for models to be useful as decision-support, it is important that their
users are able to understand and trace the embedded worldviews and assumptions. This includes the
modellers themselves, who ought to be careful when they present model results as a ‘rational’ or ‘unbiased’
analysis of alternatives.
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Figure 1. (a) A stylised process of energy system modelling. (b) The danger of ‘the model’ becoming a black box, re-applied to
different questions for which original assumptions may no longer be valid. Adapted from Pfenninger et al (2018) CC BY 4.0.

3. Understandable modelling through understandable building blocks

Because these models are only useful if they help make better informed decisions, understandability should
be a key consideration in the modelling process. We have argued that a collection of data and code, built with
a specific research question in mind, is what constitutes a model, that it is impossible to validate such a
model, and that it should be re-used with caution because of the many possible embedded assumptions
which may be valid only for the original research question. This does not mean that arguments for open
modelling such as increased transparency or the increased potential for re-use and collaboration are invalid.
Rather, these arguments may not be sufficient for ‘the model’ as a whole.

More than 10 years ago, DeCarolis et al (2012) made a call for repeatable analysis with energy-economy
optimisation models, providing recommendations such as making code and data openly available. While the
volume of academic literature published in this space has grown significantly since then, repeatability
remains an elusive goal. However, the final recommendation made by DeCarolis et al—‘Work toward
interoperability among models’—provides our departure point. Instead of models as a whole, we can
consider the building blocks that make up the model, for example, a manually curated dataset of different
possible electricity storage technologies and their associated efficiencies and costs, or a dataset of geospatial
solar energy potentials along with the code which generates this dataset, or code which simulates the
electricity demand of a fleet of electric vehicles based on assumptions about user behaviour. The analysis
performed with a model might rely on many such individual building blocks, and importantly, these
building blocks themselves can published as a piece of open-source code, or an open dataset.

With sufficient knowledge of what blocks exist, analyses do not have to be built from scratch each time a
researcher wants to answer a novel research question: one starts with a box of building blocks, knowing what
each of them do, then puts them together to build the question-specific model. In that process, one might
make adjustments to some blocks, or add a novel building block or two to the mix. If these building blocks
are free, open, well-documented, and well-understood, and therefore, can easily be adapted and re-used, the
process of building a model-based thought experiment to answer a new research question is faster, easier, and
more transparent. Therefore, understandable modelling is open modelling through and through. It requires
ensuring that all three types of openness apply: access to the description of the question that led to the
model, the thinking and assumptions underlying it, access to the numerical data, and to the code that
operates on these data to deliver answers to the question (figure 2).

The open energy modelling community could put more focus on establishing what kinds of building
blocks are useful, and on constructing and maintaining them collaboratively. There are some successful
examples of this already: software building blocks to achieve commonly needed tasks, for example
resampling of time series (Kotzur et al 2018) or sharing data across models (Gidden and Huppmann 2019),
or data building blocks that can be independently validated, for example estimating the generation potential
of wind and solar power (Pfenninger and Staffell 2016, Staffell and Pfenninger 2016, Hofmann et al 2021).
Well-documented building blocks can be re-used across models and iteratively developed across institutions.
Even if a given model-based analysis is not fully repeatable, striving towards replacing more and more
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Figure 2. A modified view of openness in relation to the energy modelling process, Adapted from Pfenninger et al (2018)
CC BY 4.0. All three kinds of openness—open access to publications, open data, and open-source code—contribute to a fully
understandable model, a transparent rather than a black box. The understandable model’s code and data are built from modular,
re-usable building blocks as much as possible.

building blocks with repeatable alternatives will eventually lead to a fully repeatable analysis. For example,
many large energy system optimisation models which are otherwise fully open still rely on commercial
optimisation solvers. Thus, the existing community efforts to build fully open-source alternative solvers like
the HiGHS project (Huangfu and Hall 2018) will eventually allow this particular building block to be
replaced with an open alternative. Finally, having a broad set of reusable building blocks available makes it
easier to avoid the ‘hammer-in-search-of-nails’ problem of model development, by making it easier to build
understandable, question-specific models. There need be no clear and hard definition of what of a building
block can consist of, as long as it is some set of code, data, or assumptions, that can be meaningfully packaged
up, documented, re-used, and perhaps most importantly, re-mixed, that is, adapted to a different context. For
example, a qualitative policy paper might produce a set of narrative scenarios that could be used to represent
different possible futures in a model experiment; such scenarios could be considered a building block.

If the models built from such building blocks are not detached, neutral scientific products, but driven by
socially determined assumptions, then calls to harmonise the models in order to provide sound scientific
decision support (Nikas et al 2021) are probably misguided. Doing so would lead to groupthink and a
narrowing of options. However, intercomparison and harmonisation of the underlying building blocks is
very valuable—for example to establish how different ways to simplify the representation of the power grid
affect model results (Priesmann et al 2019). Comparing and possibly harmonising building blocks such as
methods for estimating time series of renewable generation, or different ways in which the future demand for
electricity demand from electrified vehicles can be estimated, is scientifically useful and methodologically
possible.

4. Tailoring openness and understandability to different user groups

Openness that fosters understandability is relevant not just for the modellers themselves, but also for two
additional groups of users: the ‘expert’ and ‘non-expert’ users of models and of model-based results (Kunkel
et al 2016). Broadly, we can divide users into three groups: the core group of modellers, including the
developers of modelling tools, an intermediate group of experts, consisting of people directly using models
or working with model-based results, and finally the non-experts, consuming analysis produced by the first
two groups (figure 3). The further away from the modelling process a user is, the more they may have
difficulties locating where the most relevant uncertainties in the model lie, and whether assumptions are
scientifically grounded or politically determined (Schmidt-Scheele 2020). These users may not care about
code or data, but still need to be able to understand and assess the credibility and trustworthiness of the
thought experiments represented by a particular model result. They want to make real-world
implementation decisions on issues like infrastructure planning or policy design with confidence.
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Figure 3. Three stylised user groups of models and model results, and the extent to which they are involved in modelling or
implementation.

These farther-off users may not strictly need access to data or code. But if we think again of a model as
made up of smaller building blocks to answer a specific practically relevant question—say, examining
trade-offs between new wind farm development and transmission grid expansion—then these users could
still conceivably want to understand the building blocks, and how they were combined for that particular
application. Furthermore, some of the non-modeller-experts (the middle group in figure 3) may have deep
real-world domain expertise that modellers do not, whether that is expertise related to technical systems or
other aspects such as policy. The co-creation process by which they contribute this expertise to a model-based
analysis is much smoother and easier if they can focus their effort on understanding and contributing to a
well-delineated, documented and explained piece of the model—a building block. Models (especially linear
optimisation ones) are often vulnerable to small changes in just a few key parameters. For example, this could
be the cost or performance of electric vehicles, if transport decarbonisation is one of the modelled decisions.
If the data processing and assumptions related to transport are clearly contained in a ‘transport’ building
block, a transportation expert could more easily investigate and critically examine these model components.

This is another reason why open code and data alone are not enough. Openness needs to support all
possible users, not just the modellers themselves and technically capable users, in understanding what may
have brought about a certain model result. Having a clear understanding of what modular components a
model was built up from would help communicate this. For example, it makes it possible to delineate parts
that can be more easily validated (e.g. technical data, geospatial data, or simulation models used as inputs)
from parts which consist primarily of value-based judgements and assumptions (e.g. geopolitical
assumptions or costs). Zooming into the detailed inner workings of one of these building blocks would be
necessary only for somebody that wants to apply the building block to a different question. Modular design is
a technique used in many engineering domains. By allowing a ‘separation of concerns’ (Dijkstra 1982), it
makes it possible to focus on and improve one part of a model without the mental overhead of dealing with
the entire model at once. Thinking about a model this way therefore also makes it easier for modellers to
communicate what their models can and cannot do to a broad audience.

5. Discussion

Scheller et al (2021) interviewed energy modellers, finding that PhD students working on energy system
modelling research need to invest large amounts of time to get up and running, and that they report lower
grades for model usability and documentation than more senior researchers. This leads the authors to
hypothesise that with layer after layer of complexity added to a model, only the senior researchers are still
able to fully grasp what the model does. Even if a PhD student ultimately arrives at an understanding of the
complete chain of embedded questions, assumptions, data, and code, as outlined in figure 2, the findings of
Scheller et al do not sound promising for energy models being understandable outside of an insular caste of
modeller-priests. Does it make sense to ask for broader understandability to become one of the main goals
for energy system modellers? If we accept the post-normal science view, then yes, it is a critical aspect that
warrants more attention. In indeed Silvast et al (2020) confirm in an ethnographic study that modellers
themselves see policy relevance as one of the key ways through which their models acquire legitimacy.
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In the building-block view of modelling, understanding the model means first understanding the
building blocks, then understanding the rationale between the way in which they have been put together to
answer a particular question. Focusing community efforts on identifying generally useful building blocks,
then sharing efforts to collaboratively design, develop, and compare them, would ensure that open modelling
does not become a mere box-ticking exercise—such as dropping code in an online repository with an
appropriate license, with little practical hope of it ever being understandable by third parties. When it comes
to code in particular, practices from the software industry could be helpful. A range of software architectural
patterns exist to tackle the problem of modularisation and re-usability of code. The microservices approach,
for example, builds larger applications out of modular and re-usable ‘services’—for example a database
service—which communicate with each other through standard protocols and are configured and managed
through an automated system like Docker (Boettiger 2015). Common data formats for energy model data
can serve as the standard protocol layer, for example the IAMC (Gidden and Huppmann 2019) or
friendly_data formats (Ali 2022). In terms of complexity, at the very simple end of the scale, an immediately
practical approach is to make the building blocks so easy to use that a standard interface is not needed. For
example, a tool that produces renewable electricity supply time series data in an easily understandable CSV
files means that users can adapt it to whatever input format they need—if need be, in a manual processing
step. On the other end of the complexity scale are standards like the Functional Mock-up Interface (FMI),
which defines a container standard and interface to let smaller simulation models work together to simulate
larger systems (Modelica Association Project FMI 2023).

For building blocks to be (re-)useable, and the resulting models understandable, sufficient
documentation is of key importance. Here also, approaches from other domains could prove useful. Mitchell
et al (2019) propose ‘model cards’ to accompany trained machine learning models, giving background
information on how a model was trained, and in which contexts the authors think a model should be used. In
the context of energy models, different kinds of users require different degrees of detail. While each building
block should come with documentation detailed enough not just to understand but also re-use and adapt it,
documentation for a model that (partially) relies on pre-existing building blocks can simply point to the
detailed building block documentation. This could be done much in the same way as food labelling works: in
most countries, food products must be accompanied by a nutrition facts label and list all of their ingredients.
This works because the labels themselves are standardised to summarise information at an appropriate level
for the ‘end user’, the consumer of a food. In the European Union, it is sufficient to list additives via their ‘E
numbers’—the detailed ‘documentation’ for an additive can then be looked up by a consumer if needed.
Similarly, a ‘nutrition fact’ label for models could give a high-level overview of the building blocks used.

Finally, who should be responsible for taking action? Extra effort on top of what researchers and
modellers already do know clearly comes with an extra cost. Is it worth the time spent on organisation,
documentation, standardisation, and writing interface code (where standard interfaces are used)? It should
be clear that pay-offs to such an investment will accrue particularly in the longer term, for individuals (e.g.
making an individual researcher more productive in re-using their own work months or years later), teams
(e.g. through better and smoother collaboration), and research and society as a whole (e.g. by making it
easier to build on other people’s work). Thus arguments in favour of efforts like this are similar to arguments
in favour of open science more generally (Allen and Mehler 2019). Besides the effort needed, there is also a
danger of building blocks with conflicting assumptions being used together; an issue identified as holding
back holistic energy system modelling in general by Silvast et al (2020). However, the conceptual and
practical process of designing, maintaining, discussing and combining building blocks could make it easier to
understand how energy model evidence is constructed and where disciplines under-represented in the
process can better contribute. For example, the process could help counter the exclusion of social sciences
and humanities (Royston and Foulds 2021), by opening up avenues for integrating the modelling of social
aspects of the energy transition (Krumm et al 2022). Diekmann and Peterson (2013) argue that not only are
engineering models not value-free, but that they should be at least partially determined by value judgements.
Separating concerns by using building blocks could make it easier to identify and communicate such value
judgements, reducing the risk that model results are or can be used to silence dissent or support
already-prevailing interests (Royston et al 2023).

Non-open models can also benefit from this process. The UK Energy Research Centre (UKERC) has
defined a three-level model transparency categorisation ranging from ‘open description’, where at least
documentation is accessible, ‘open access’, where access to a model is shared across multiple users and
documentation and data are publicly available, through ‘open source’, which they describe as ‘fully
transparent and accessible models available for any user to download and use’ (Li and Strachan 2021). While
the goal in this paper has been to argue for improvements in the state-of-the-art of this last, fully
open-source category, building blocks could also let existing models be opened up in a step-by-step fashion
or could be re-used in less-than-fully open models. Even if model developers cannot make the leap to the
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highest level of accessibility, open source, they could potentially make parts of their workflow available as an
open building block for others.

Climate change mitigation is an urgent problem. Models and model results are wielded as weapons in
battles between competing interests involving not just researchers but actors across society. Open modelling
should be transparent and understandable modelling that does not hide but lays bare the embedded
assumptions and agendas, helping resolve debates rather than advancing partisan interests. Making this
process easier will prevent misunderstandings amongst modellers and users alike.
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