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Abstract – In this paper, we propose a strategy to control the self-organizing dynamics of the
Bak-Tang-Wiesenfeld (BTW) sandpile model on complex networks by allowing some degree of
failure tolerance for the nodes and introducing additional active dissipation while taking the risk
of possible node damage. We show that the probability for large cascades significantly increases or
decreases respectively when the risk for node damage outweighs the active dissipation and when
the active dissipation outweighs the risk for node damage. By considering the potential additional
risk from node damage, a non-trivial optimal active dissipation control strategy which minimizes
the total cost in the system can be obtained. Under some conditions the introduced control
strategy can decrease the total cost in the system compared to the uncontrolled model. Moreover,
when the probability of damaging a node experiencing failure tolerance is greater than the critical
value, then no matter how successful the active dissipation control is, the total cost of the system
will have to increase. This critical damage probability can be used as an indicator of the robustness
of a network or system.

Copyright c⃝ EPLA, 2015

Introduction. – Self-organizing criticality (SOC) [1–7]
has been seen in many natural and engineering sys-
tems, such as earthquakes [3], forest fires [4], and power
grids [8–10], which means that a system can self-organize
toward the critical point with power-law–distributed event
sizes. SOC has been applied to study and understand
the cascading failures in complex systems [11,12], which
are complicated sequences of dependent outages and can
take place in electric power systems [8–10,13,14], the Inter-
net [15], the road system [16], and in social and economic
systems [17]. Because self-organizing systems can respond
via feedback mechanisms to the control strategies applied
to them, successfully controlling them is very difficult.

The sandpile model is a prototypical theoretical model
exhibiting avalanche behavior that can be used to study
cascading failures and self-organizing dynamics on com-
plex networks. It consists of a network of nodes each hold-
ing a number of sand grains. Each node has a maximum
amount of sand it can hold (its capacity). If more sand
is added to a node already at capacity, it topples and dis-
tributes sand to its neighboring nodes (which may in turn

topple if they exceed their capacity). In [18–21], control
strategies are proposed by adjusting where a cascade tends
to begin (i.e. where the sand that launches the cascade
lands). But in real systems, the cascade’s origin is usually
uncontrollable. Thus, rather than trying to control where
a cascade begins, control strategies need to be able to deal
with a cascade once it has begun. For example in [22], the
self-organizing dynamics of a sandpile model are controlled
by introducing immunization to some vertices, which can
thus absorb an infinite amount of sand.

In this paper, we propose a more realistic strategy for
controlling the self-organizing dynamics of a system by
making use of the failure tolerance of components in the
system. Generally the components are designed to be able
to sustain abnormal operating conditions for some time.
For example, in power systems, which can be considered
as a dual network that maps the transmission lines into
nodes, the transmission lines can operate at an overloading
power flow for a short time because they are designed to
have some margin over the normal power flow operating
conditions. Although there is a potential risk of damage, it

38006-p1



Junjian Qi and Stefan Pfenninger

is possible to help prevent the propagation of the cascading
failures by allowing some components to temporarily work
at abnormal operating conditions, thus securing time for
the operators to perform proper control and recover the
system back to its normal state.

BTW sandpile model. – This section describes
the sandpile model and how we create cascades on it.
We consider the Bak-Tang-Wiesenfeld (BTW) sandpile
model [1–3] to represent the basic self-organizing dynam-
ics of a system. The system consists of a network of n
nodes that hold grains of sand. The topology of the net-
work is fixed but the number of sand on each node changes
in time. Let k(i) and N (i) respectively be the degree and
the set of neighbors of node i. Each node i holds a certain
number zi grains of sand and a node is called s-sand if
it holds s grains of sand. The capacity of a node K(i) is
the maximum amount of sand it can hold and is set to
K(i) = k(i) − 1 for node i. A node over capacity topples
by shedding one sand to each of its neighbors.

On this network, cascades occur as follows: Drop a grain
of sand on a node i, which is chosen uniformly at random
and is called the root of the cascade, so that zi → zi+1. If
this addition of sand does not bring the root over capacity
(the root is initially an s-sand where s is less than the
capacity), then the cascade is finished. Otherwise, the
root topples by shedding one grain to each of its neighbors
as zi → zi − k(i), zj → zj + 1, j ∈ N (i). Any node that
now exceeds its capacity topples in the same way until
all nodes are under or at capacity. Whenever a grain of
sand moves from one node to another, it can potentially
dissipate (disappear) with probability ϵ.

The size of a cascade is the number of toppling events,
while the area of a cascade is the number of nodes that
topple. We begin a new cascade by dropping a grain on a
uniformly random root node. After a transient the system
reaches a steady state in which the input and output of
energy is balanced.

For simplicity we first consider the BTW process on a
random 4-regular graph (i.e., a random network of degree-
four nodes). Furthermore, each node has a random initial
load not exceeding its capacity.

Control by failure tolerance. – This section dis-
cusses how the sandpile model described above is modified
to suppress cascades by failure tolerance. Similar to the
basic sandpile model, a grain of sand is dropped on a node
i (the root node) which is chosen uniformly at random so
that its grains of sand zi → zi +1. If this addition of sand
does not bring the root over capacity, then the cascade
ends (again, this behavior is as in the basic model). Fail-
ure tolerance comes into play if the root node exceeds its
capacity: it will not immediately topple, rather, it has the
ability to operate for a short time above its capacity. This
creates a time window during which some control strat-
egy can be used to eliminate the overcapacity and return
the system to its normal condition before the node topples
and potentially causes a cascading failure. For example,

in power systems this control strategy may be to shed
some load.

Two additional steps are now taken which do not occur
in the basic model.

First, because of its non-immediate toppling, the node
operating above its capacity can sustain damage with a
probability ϵdam. If a node is damaged, its grains of sand
will be redistributed to its neighbors, the edges connecting
it to its neighbors will be removed, and it will not be
able to hold any sand (i.e., it is considered non-functional
and removed from the network). Furthermore, the degree
and the capacity of its neighbors will decrease by 1 as
k(j) → k(j)−1,K(j) → K(j)−1, j ∈ N (i), which in turn
decreases the system’s total capacity of holding sand. If
all the edges of a node i are removed, all the sand it holds
will be removed as zi → 0 if k(i) = 0.

Second, if the node over capacity does not get damaged,
each grain of sand above capacity will dissipate with a
probability ϵact. This can be considered an active shed-
ding in response to the overcapacity, leading to decreased
stress on the system and reducing the likelihood of a cas-
cading failure. If this active dissipation successfully re-
moves all extra zi−K(i) grains of sand, the node will now
be at its capacity and thus the cascade stops; otherwise, it
topples in a similar way to the basic BTW sandpile model
without control, shedding its sand load to its neighbors,
as described above.

If any additional node is now over capacity (because
it received additional load due to a damaged or toppled
neighbor), the same process applies again until all nodes
are at or under capacity. Note that with the introduc-
tion of this control strategy, the topology of the network
can change during a cascade due to node damage, which is
very different from the basic BTW sandpile model without
control described in the previous section. Consequently,
it is possible that zi > K(i) + 1 = k(i). This occurs
when the neighbor of a node i damages and the sand on
this neighbor is redistributed to node i. In this case the
grains of sand on node i will be zi → 0. For its neigh-
bors, the grains of sand on node i will first be evenly
distributed as zj → zj + ⌊zi/k(i)⌋, j ∈ N (i) and the re-
maining zi mod k(i) grains of sand will be redistributed to
the same number of randomly chosen neighboring nodes.

In order not to significantly change the dynamics of the
system, the control is considered a temporary measure.
When the cascade ends the network topology is recovered
and the sand loads are reset to what they would be in
the case without control. The control strategy consid-
ered here introduces a benefit through active dissipation,
but also an additional risk from the possible damaging of
overloaded nodes, with the consequent degradation of the
network’s overall capacity. For the results reported here
we use a random 4-regular network of size n = 105 with
N = 107 iterations of adding one grain of sand. Before
launching N iterations of the active control case, N it-
erations of the uncontrolled case are performed to ensure
that the system has passed through its transient state (the
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Fig. 1: (Colour on-line) Probability distribution of cascade size.
n = 105, N = 107 and ϵ = 0.05.

results from these initial N uncontrolled iterations are dis-
carded in the further analysis). The resulting probability
distributions of cascade sizes for different ϵact and ϵdam are
shown in fig. 1. When the risk for node damage outweighs
the active dissipation, the probability for large cascades
significantly increases. When the active dissipation out-
weighs the risk for node damage, the probability for large
cascades significantly decreases.

Cost and optimal control. – The total cost Ct for
one cascade consists of three parts: the cost of the size of
cascades Ccas, the cost of active sand dissipation Cact, and
the cost of node damage Cdam. Therefore, Ct = Ccas +
Cact + Cdam. Similar to [21], when cascade size is greater
than zero Ccas = c [size]α where α > 1 and when cascade
size is zero there is a benefit of 1 (i.e. Ccas[size = 0] =
−1). As in [21], this benefit defines the scale of costs
and in real systems can be profit on uneventful days for
infrastructures and investment portfolios. Here c and α
are chosen as 0.005 and 1.5. For Cact and Cdam, we set
the cost for each sand dissipation and each node damage
respectively as 0.6 and 1.0, which correspond to the cost
of cascade size of 24 and 34. In other words, equivalently
Cact = nact c [24]α and Cdam = ndam c [34]α, where nact

and ndam are respectively the grains of actively dissipated
sand and the number of damaged nodes in one cascade.

By setting the cost in this way, the cost for one node
damage is greater than that for each sand dissipation and
the cost for each sand dissipation is greater than that for
cascade size one. This is reasonable in the model because
the damage of a node can greatly degrade the capacity
of the network for not being able to hold sand any more
and for causing its neighbors’ capacity to decrease, the
control will cause intentional extra sand dissipation, while
cascade mainly transfers grains of sand from one node to
another and the only possible loss is the very weak sand
dissipation with probability ϵ.

This is also realistic in real systems since the damage
of a component can cause great economic loss due to loss
of functionality of that component and the cost of repair

Fig. 2: (Colour on-line) Control effect under different parame-
ters. The black dots represent optima (ϵ∗act).

after a cascade ends. The control strategy that actively
dissipates load will intentionally make some load disap-
pear. This dissipated load corresponds to an economic
loss, while a cascade itself does not directly cause economic
loss. For example, in power systems, if a transmission line
is damaged during a cascading blackout it usually cannot
be recovered until the cascade ends. It therefore cannot
transmit power at the time when it is most needed to do so.
Furthermore, it then has to undergo costly repairs or even
replacement. By contrast, the control can be implemented
by actively shedding some load, preventing a further over-
loading of transmission lines. Shedding load will cause
the disruption of some consumers and will surely cause
economic loss, but it does not cause component damage
or influence the functioning of the transmission network.
Furthermore, during a cascade caused by the tripping of
one power line, the power generated by the generators can
still be transmitted to the consumers through other trans-
mission lines, thus not directly causing economic loss.

Given a fixed ϵdam we can find an optimal control pa-
rameter ϵ∗act that minimizes the average total cost ⟨Ct⟩.
Figure 2 shows the cost under different ϵdam and ϵact,
obtained by sampling over a discrete set of values for
ϵdam and ϵact. For each curve ϵdam is fixed and there
is non-trivial optimal ϵact for which the total cost is min-
imized (to determine them, a third-degree polynomial is
fitted to the sampled cost curves to obtain smooth curves).
The cost for the basic model without control is also plot-
ted for comparison. When ϵact is increased, the control
becomes more successful and it is more easily possible to
stop the propagation of cascades, thus decreasing the cost
of cascades. However, the control itself has a cost and
thus the increased ϵact will increase the cost of control.
Therefore, there is an optimal ϵact which will guarantee
minimum total cost. From fig. 2 it is also seen that an in-
creased risk for performing the control, i.e. higher values
for ϵdam will require higher optimal ϵact.

For any fixed ϵdam, the ϵact for optimal control is
shown in fig. 3(a). We can see that the optimal ϵact will
slightly increase when ϵdam increases. This is because
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(a) Optimal control (4-regular network). (b) Range width of ϵact that reduces the total cost
(4-regular network).

(c) Optimal control (scale-free network). (d) Range width of ϵact that reduces the total cost
(scale-free network).

Fig. 3: (Colour on-line) Optimal control and range width of ϵact that reduces the total cost for both the 4-regular and scale-free
case. (a) and (c): the points marked in blue are the optimal control values (ϵ∗act), and the vertical range indicates those values
of ϵact for which the controlled case has lower cost than the uncontrolled case. The point marked in green is the critical ϵdam

where the range becomes zero.

the increased risk of damage requires more successful
control in order to limit the total cost. Furthermore,
with the increase of ϵdam the range of ϵact, denoted by
[ϵmin

act (ϵdam), ϵmax
act (ϵdam)], in which the total cost decreases

will shrink and finally disappear, indicating that no matter
how one adjusts the ϵact (how successful the active dissipa-
tion control is) the total cost will surely increase after the
control is added. Here ϵmin

act (ϵdam) and ϵmax
act (ϵdam) respec-

tively denote the minimum and maximum ϵact under ϵdam
that can guarantee a decreased total cost compared with
the uncontrolled case. The critical ϵdam that corresponds
to zero range width (ϵmax

act (ϵdam) = ϵmin
act (ϵdam)) for ϵact can

be used as an indicator of the robustness of the network.
It is denoted by ϵ∗

dam
and the bigger it is the more robust

the network is.
The range width W = ϵmax

act (ϵdam) − ϵmin
act (ϵdam) is

shown in fig. 3(b). It is seen that W first decreases
approximately linearly and then drops rapidly after the
ϵdam exceeds some value (0.04 in our case). The critical
ϵ∗
dam

corresponding to zero W is around 0.05, which is
a very small value and indicates that the 4-regular net-
work we are considering is not very robust. When ϵdam
is greater than 0.05, no matter how successful the active

dissipation control is, the total cost of the system will have
to increase.

Influence of network structures. – In this section,
we examine how the random network described earlier
compares to a scale-free network [3]. A scale-free network
has some high-degree nodes and for the same ϵact, high-
degree nodes are easier to control, but the effect of damag-
ing a high-degree node can also be significant. Therefore,
it is not obvious whether it is easier or harder to control
a scale-free network.

For this comparison, a scale-free network is gener-
ated with the Barabási-Albert preferential attachment
model [23] as implemented in NetworkX [24], with m = 2
(where m is the number of edges to attach from a new
node to existing nodes), resulting in a mean degree of 4 to
match the 4-regular graph. Again, the initial load on each
node is randomly assigned (lesser or equal to its capac-
ity). As in the 4-regular case, n = 105 and N = 107. The
control proceeds is exactly the same manner as described
above for the 4-regular case.

The resulting optimal control and range width of ϵact
that reduce the total cost are shown in figs. 3(c) and (d).
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It is seen that for the same ϵdam the range of ϵact reducing
the total cost for the scale-free network is larger than that
for the random network. The critical damage probabil-
ity for the scale-free network is around 0.14, which is also
much higher than the random network. From these re-
sults, it appears that the scale-free network is more robust
to random failures, which is consistent with the conclusion
in [25].

Similar to [25], the robustness of scale-free networks to
random failures should also root in their extremely in-
homogeneous connectivity distribution. Power-law dis-
tribution implies that the majority of nodes have only
a few edges, nodes with small connectivity will be influ-
enced with much higher probability. Besides, being eas-
ier to control for high-degree nodes seems to play a more
important role than the more significant effect of their
damage.

Conclusion. – In this paper we propose a strategy to
control the self-organizing dynamics of the BTW sand-
pile model on complex networks by allowing the failure
tolerance of some nodes. For the control we consider
here there is benefit from active dissipation and also ad-
ditional risk from the damage of over-capacity nodes and
the consequent degradation of the network’s overall capac-
ity. By considering the additional risk from node damage,
a non-trivial optimal active dissipation control strategy
which minimizes the total cost can be obtained. We show
that due to the potential additional risk from node dam-
age the introduced control can only decrease the total cost
under some conditions, when compared with the uncon-
trolled model. Also, when the probability for the damage
of a node experiencing failure tolerance is greater than the
critical value, no matter how successful the active dissipa-
tion control is, the total cost of the system will have to
increase. This critical damage probability can be used as
an indicator of the robustness of a network or system and
can be further used to compare the differing structures of
networks in different fields. Possible applications of the
model discussed in this paper, for which further work is
needed, include physical [8–14], economic [17], and ecolog-
ical networks [26,27].
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